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GENERAL ALGEBRAIC METHOD APPLIED TO CONTROL ANALYSIS OF
COMPLEX ENGINE TYPES

By Aarox S. BorsEnBox and Ricearp Hoop

SUMMARY

< general algebraic method of attack on the problem of con-
trolling gas-turbine engines haring any number of independent
tariables was wutilized employing operational functions to
describe the assumed linear characteristics for the engine, the
control, and the other units in the system. Mlatrices were used
to describe the various units of the system, to form a combined
system showing all effects, and fo form a single condensed
matriz showing the principal effects. This method directly led
to the conditions on the control system for noninteraction so that
any setting disturbance would affect only its corresponding con-
trolled variable. The response-action -characterisiics were
expressed in terms of the conirol system and the engine char-
acteristics. The ideal conirol-system characteristics were ex-
plicitly determined in terms of any desired response action.

INTRODUCTION

The current development of gas-turbine engines indicates a
future trend toward a wide variety of engine types. As new
engines are developed or built by combining basic components
of existing engines, the control problem presented by each
engine type will be different. Control systems satisfactory
for one engine type could not be expected to operate for
another engine type. Even engines of the same type but of
different size or operated under radically different conditions
may have different engine characteristics that require special
control characteristics. The current fluid and indeterminate
state of gas-turbine development indicates a need for a gen~
eral control analysis that could be applied to any of the new
engine types as they are developed

The control problem for engines differs from that for many
plants, servomechanisms, or electric networks, because the
control of more than one variable is desired. At least those
variables that may cause failure should be controlled. For
gas-turbine engines, failure may be caused by excessive tem-
perature, speed, or torque. Exceeding specified burner oper-
ating limits may eause burner blow-out. The problem of
controlling more than one variable is therefore basic for gas
turbines.

In control design, limitations may be placed on such char-
acteristics as response time, maximum undershoot or over-
shoot, dead-band, or steady-state error. This problem is
the subject of much of the control literature to date and
various methods of exact, approximate, and graphical means
of solution have been developed (reference 1).

Controlling more than one variable generally introduces an
interaction among the controlled variables. Making a new
setting for one variable may cause, during the transient
state, changes in the other controlled variables. If these
other variables are operating at or near a maximum point,
this interaction may cause excessive values and possible
damage to the engine. It would therefore be desirable that
each new setting of a controlled variable affect only the
variable being set, thus giving separate noninteracting con-
trol of all the variables being controlled.

A general algebraic approach to control problems of multi-
variable engines, which was developed at the NACA Lewis
laboratory during 1949, is presented herein. This method
leads to the conditions on the control characteristics that
eliminate interaction between control variables and to an
explicit solution for control charscteristics that yields any
desired response action.

SYMBOLS

The following symbols are used in this report:

a, b, e e constants

Cor C(p) control function to which engine-dependent-
variable.errors are applied

C" or (" (p) control function to which engine-independent-
variable errors are applied

E or E (p) engme-charactenstlc funetion

square matrix using first 4 columns of engine

matrix

[E*| determinant of E* matrix

LE* 5 cofactor of Ej; element of E* matrix

F(p) general operational funetion

i number of engine-dependent variables being
controlled

Lor L(p) instrument-characteristic function

N engine speed

N . measured value of engine speed

n number of engine-independent variables

P operational symbol

Ror R(p) response function for -controlled engine-
dependent variables

R’ or R'(p) response function for controlled engine-
independent variables

Sor S(p) servo-characteristic function

engine temperature
T measured value of engine temperature
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vV uncontrolled transient disturbance in engine-
independent variable

engine fuel flow

measured value of engine fuel flow

signal to engine fuel-flow servo

setting of engine-independent varigble

engine-independent variable

measured value of engine-independent variable

signal to engine-independent variable servo

setting of engine-dependent variable

engine-dependent variable

measured value of engine-dependent variable

propeller-blade angle

signal to propeller-blade-angle servo

R el s sl e Mg 8lE

engine-interaction factor <7=%€)

T engine time comstant

Subscripts:

i, k7t v, indices

& setting of specific engine variable

Tronsient

|4 Controf

Clp}

Servo

s |-

]

- Control
Elp) ¥ Y~setting

Engine

[Z/}— i-
Instrument :

FIGURE 1.—Basio controlled-engine configuration.
ANALYSIS

The system considered herein is essentially that shown in
figure 1. This block diagram describes a typical engine and
control system. The general system configuration chosen
is the one employing negative feedback in which error in the
controlled variable is fed back into the control. The engine
is represented as & box with a characteristic function E, the
input of which is the cngine-independent variable z and the
output is the engine-dependent variable y. The characteris-
tics of the instrument measuring the value of the controlled
variable are denoted as L for which the input is the variable
itself and the output is the measured value 4. The error is
the difference between the setting ¥ and the measured value
of the variable 4. The characteristics of the control are
denoted as a function € for which the input is the error and
the output is a signal z to a servo unit, which is the device
that actually changes “the engme—mdependent variable and
completes the loop. The servo characteristic is denoted as
the function S and may be considered as a part of the control
or as a separate entity, as shown in figure 1.
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In addition to the intentional disturbance made on the
control setting, inadvertent transient disturbances may
appear in any part of the system. One possible source of
such transient disturbances has been included as an uncon-
trolled change in engine-independent variable. The variable
z is thus the sum of a controlled part and of an uncontrolled
part V.

The characteristic functions used to describe the various
units of the system are operational functions or Laplace
transforms. The dynamic characteristics of gas-turbine
engines,_controls, and servos can be approximated by such
operational functions at least for the small deviations of
variables in which the linear assumption is valid. These
operational functions can be used without reference to the
initial conditions of operation before disturbances occur, if
the initial condition is & steady-state condition and the values
of all variables are their deviations from the initial stcady-
state condition. In general, the unit can be deseribed by a
general operational or transfer function as follows:

y=F@)-x (0

The block diagram for this unit can be shown as a box
containing the function F(p) for which the input is 2 and the
output is .

One method of deriving the operational function for a unit
that approximately follows a linear differential equation is as
follows for the equation given by

i+ayt-by=citex 2)

where the dots above symbols indicate derivatives with
respect to time. This equation can be algebraically repre-
sented in terms of the differential operator or in terms of the
Laplace transform variable (reference 2). If the differential
operator p is substituted for d/dt, equation (2) can be written

py+apy+by=cpr-tex 3)

If this equation is solved for ¥, an explicif expression for the
output can then be obtained as a function of p operating on
the input » as follows:

y=get oy e=F )2 )

For each unit of the system, an equation similar to equa-~
tion (4) can be written in terms of the input, the transfer fune-
tion, and the output. A set of simultaneous algebraic equa-
tionsis then obtained that can be combined or manipulated in
any desired manner. The resulting transfer functionscan then
be interpreted from the domain of the variable p to the real
time domain as time responses of a variable to some specified
disturbance.
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For the system of figure 1, the following equations can be
written:

Engine characteristic: A

y=E.z
Control characteristic:

£=0-(F—7)

... " (5

Instrument characteristie:

y=L-y
Servo and transient disturbance:

r=S8.z+V

Equations (5) can be combined for the effect of the disturb-
ances Y and 1" on the controlled variable y as follows:

ESC E

zscrri Y vEsors iV (®)

The previous procedure is, in general, followed herein.
Equations, such as equations (5), are written for each unit
in the system and are then combined, as in equation (6), to
obtain the effects of the disturbances.

General representation of engine.—If the engine has more
than one independent variable, there are additional degrees
of freedom in control. The engine-characteristic function
must be expanded to show how each dependent variable of
interest is affected by all the engine inputs as follows:

z1+Eyg - oz ...
y2=E21 R T ol VIR 7% S + Eoy « s

?ll=E11 - + B - zu\

r M

‘yt=E¢1 s+ Ep-zt+ ...+ By, - Tn

In equations (7) each dependent variable ¥ is expressed as a

linear sum of effects due to each independent variable z. For.

n independent variables, there are n terms in each equation.
There is an equation for each dependent variable of interest.
For ¢ dependent variables, where i=n, there are ¢ equations.

The number of degrees of freedom of the entire system
cannot be greater than the number of degrees of freedom of
the engine alone. For continuously acting controls (excluding
such controls as limiters), the total number of engine variables
being controlled should not be greater than the number of
engine-independent variables. Equations (7) can be written
in the following index form:

y;=’:;21 Eu- Tk (8)

where
i=12,...14

583

The functions Ej; represent engine characteristics whereby
each input separately affects each output.

Equation (7) or equation (8) can be visualized in the matrix
form of figure 2. The engine functions are set up in & rec-
tangular array where Ej represents the element in the jth
row and the kth column. The z inputs enter the matrix in
the columns and the ¥ outputs are attached to the rows.
Bach input multiplies all the elements in its column and each
output is the linear sum of the resulting products in its row.
Thus the effects shown by equations (7) and (8) can be
pictorially traced in figure 2. For later use, a square matrix
obtained by using only the first 4 columns in figure 2 is
denoted by E*.

24 e r'y 3 By
I
Eu ELZ T ' Eﬁ | 1 Em F——>1y:
I
Eg Eze ' ' By I . Ezn ——>Yy:
1 1 1 1 1 I I ] />
I
v ] 1 ] 1 I E 1 >
Ey Eyz ' ' Ey I ' Epn —>Y
. jj
N
E* |

FIGURE 2.—QGeneral representation of complex engine {ypes.

General representation of control.—The control system is
generalized to this extent: (1) Inasmuch as the engine has n
independent variables, there are n degrees of freedom for the
entiresystem. Ifonly 2 limited number ¢ of engine-dependent
variables are to be controlled, the difference n—% of the
engine-independent variables can be controlled. (2) The
control system employs negative feedback where only errors
are applied to the control. (3) Each error is to affect
every engine-independent variable.

The control equations are written where each control
output z is expressed as a linear sum of effects due to the
errors in the controlled variables as follows:

2= Co(Ti—T)+ Caa- (Fa—T+ - . . Cul(Te—T)+

L Chern - Kepi—Tedt - HCW(Xa—T2)

22— Car(T—T)+ Coa- (Ta—Td+ - - - +Coe- (Fe—T)+
Crocrn » Kisi—Fogd+ - o FCu (Xu—T)

@)
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There are a total of n controlled quantities, n errors, and n
terms in each equation. There are also n engine-independent
variables and therefore n equations. Those independent
variables to be controlled are given subscript numbers from
1+1 to n and those controls to which the co_rresponding
errors are applied are denoted by C’.
The control characteristics of equatlons (9) can ' be written
.in the following equation in index form: .
£ n
g:_,c=07=_,: Cio - (Y,—y,)+p§do'm C(X—Zy O do)
where
k=1,2,...n

Equations (9) and (10) can be visualized in the matrix form
of figure 3. The control functions are set up in a square
arrangement where Cy, represents the element in the kth
row and sth column. The error inputs, ¥Y—¥ and X—7,
enter the matrix in the columns and the gz outputs are

[+ c’
y+——-d Cy Ciz , . 1 Cu I C'iirs) A
Ze——— €y Cp¢ . ' . € |0:~.(x,;,) . Coyn
Lyge—— 1 § t ) i I ' '
] t t i I ] I 1 1 te
] i i t i t ! 4 1 t
' | ! 1 i ' l ' 1 '
-—]
i s t i i ' I 1 ' '
Lne— Cui Cpe ' ' I Cri { Cﬂ(ftﬂ ' C'nn
(Y\i_ 41) (Xn-Zn)
V 4

F16uURE 3.—General representation of control system,

attached to the rows. Each input multiplies all the ele-
ments in its column and each output is the linear sum of the
resulting products in its row. Thus, the effects shown by
equations (9) and (10) can be pictorially fraced in figure 3.

Representation for instrument and servo functions.—The
characteristics of the instrument measuring the value of the
controlled variable have been denoted as L in equations (5);
the input of this instrument is the variable itself and the
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output, the measured value. These characteristics can be

writien as

Yy=Ly + ¥,
where ’ " .
p=1,2, ..
_ (11)
Lp== Ly * Ty
where

p=1+1,

The general assumption is made that cach cngine-
independent variable would require a servo, which would
change the variable in accordance with its corresponding sig-
nal 2. A source of transient disturbance is included that may
vary any of the engine-independent variables outside of the
controlled variation in them. Thus, the expressions for the
engine-independent variables can be given by

2=Su + L+ 1%
k=1, 2,

(12)

where

Each variable z is thus the sum of a controlled part and an

uncontrolled part.
Anelysis of complete system.—The determining charac-

teristic equations for all the units in the system are repeated.

Engine: | h
n
Eﬂ;' X (8)
=1
where
i=1,2,...1
Control:
i n .
3:.1'-=§ Olw' (Ya_yu)'[' %l O,ku‘ (X#—Ey) (10)
= -
where
k=1,2,...n
Instrument: ' - (13)
ya=Ln'yﬂ
where .
v=1,2,...1
_ (11)
Ty=Lyy- 7,
where .
p=1+1,
Servo and transient:
L= Su; h'{' T?k (1 2)
where
k=1,2, v e e I J

These equations can be visualized in the matrix form of
figure 4. Figure 4 represents, by block diagram, the general
system considered herein. This figure specifically is for an
engine having five independent variables for which three
engine-dependent and two engine-independent variables are
controlled. The engine matrix is shown for the five inputs
and the three outputs to be controlled. The control matrix
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FiourE 4.—Combined general eontrolled-engine-system configuration.

is shown for the three ¥ error inputs, the two 2 error inputs,
and the five outputs to the engine servos. The measuring
devices, the servos, and the transients are also included.
The entire system is enclosed except for the outside dis-
turbances, which can be imposed on the system. These are
the five settings of controlled variables ¥ and X and the
five transient disturbances that have been included.

All the properties of the system can be obtained from this
block-diagram representation. The effect of any outside
disturbance or any internal disturbance can be easily traced
on figure 4. For specific effects, the equations of each unit
of the system, equations (13), are most productive of results.

When equations (13) are combined to give the effects on
the controlled variables of the outside disturbances, the
following equations are obtained:

Y= Zn: Zﬂ ER Skk Cl:v( I’t_Ln'yr) +

k=1 r=1

i i EaSuC w(X,—Lyx)+ ?;‘1 EzV% (14)

=1 ST
where
i=12,...1

Tr= 'g S}:l: Ckl( I7n - Lu'yr) +“ ;H-l SH;O",“(‘Y‘,,'— pr.xp) + T r‘; (1 5)

where
E=1,2,...n

Equation (15) is valid for the effects on any (k=1, 2, ...n)
engine-independent variable. For the effects on the con-
trolled engine-independent variables, equation (15) is used for
E=141ton. A more condensed form of the matrix repre-
sentation of the system, shown in figure 5, is indicated by

. X
% (=]
[£x]
10 A A A
L1l
-
-
ESC— E
— o ﬂc_-—aao,'o
< T |—o]olola]/
L ———
System matrix

FiGUBE 5.—Condensed matrix form of complete controlled system.

equations (14) and (15). A single-system matrix is used in
which the inputs are the errors in controlled variables and

the outputs are the controlled variables. The ESC matrix
is a matrix in which the element in the jth row and sth

column is kiE,,;SuOk,. Similarly, an ESC’ matrix is a
=1
matrix in which the element in the jth row and pth column
is kzn)EﬂSuC”,,,,. An SC matrix is defined as S;;.Ci, and an
=1

SC’ matrix is defined as Sp(¥n. An additional matrix is
included showing the effects of the transient disturbances.

Noninteraction conditions.—Several types of noninter-

action may be specified as follows:

(1} A specific controlled variable, such as y; is to be
affected only by its own setting I’; and is not to be affected
by any other setting, which means that in figure 5 the jth
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row of the system matrix contains only the diagonal eIement
and the other elements must be zero.

(2) Any specific setting, such as ¥, is to affect only its
corresponding controlled variable y, and not any of the other
controlled variables. In figure 5, the fth column of the
system matrix contains only the dlagonal element and the
other elements must be zero. -

(3) Every confrolled variable is to be affected by its
corresponding setting only, or every setting is to affect its
corresponding controlled variable only. This complete non-
interaction means that in figure 5 the system matrix is a
diagonal matrix. In general, the effect of the setting on the
system is of primary interest and a condition such as (1} is
of secondary interest. The interaction effects defined in
terms of the effects of the settings, such as (2) and (38), will
thus be considered herein..

In order for any setting_ suE as ¥, ‘ to affect only Yy it is

sufficient from figure 5 that for all 7 from 1 to ¢ when 77t

,E E#SuCr=0 (16)
and for all x from 741 to n .
SMOI“;:O (1 7)
or
Cu= (17a)

Equation (17) states that the i1 to n elements of the {th
column of the ¢ matrix (fig. 3) are to he zeroed. Along with
this condition, equation (16) becomes
i
g-EijkkOkt=0 ' (18)
for all 7 from 1 to ¢ where j54t.
i—1 homogeneous equations in the 4 unknown C’s and there-

fore specifies the ratios between any two elements in the ¢th
column of the € matrix. This result becomes

85sCse_|E*y
O | E*u

- a9

as shown in the appendix. The notation E* refers to the

square engine matrix using only the first ¢ columns. The

notation |E*,| indicates the cofactor of the E,; element of
the E* matrix. The necessary and sufficient conditions for
any setting Y, to affect only y, are

C‘,g'= (17&)
for all x from 741 to n and
SHO.H IE ‘J'[ .
81,0 " 1E"| (19)

as shown in the appendix.
For any setting X, to affect only z,, it is sufficient from
figure 5 that

gE’u SuC'rr =0 (20)

Equation (18) expresses
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for all j from 1 to %; and for all 4 from i-4-1 to n where pxr

8uC'e=0 (21)
or
Cly=0 (218)
Equation. (21) states that the i+1 to n clements of the rth
column of the ¢ matrix contain only the diagonal term.
With this condition, equation (20) becomes

£ -
; (Ejk Skba'kr) + Ejr SrrO’rr= 0 (2 2)

for all § from 1 to ¢. Equation (22) expresses 1 homogencous
equations in the ¢4-1 unknown (C’)’s and therefore specifies
the ratios between any two elements in the rth column of
the ¢’ matrix. This result becomes

i

S”CIIJ ng} fE*kIIEkr
SO L= 23)

'\ er ELIE*‘“!E“J’

for any 7 é.nd vfrom 1 to 7 or
i

, — 2| E*E

SJJO ir é I kf} * (24)

Sl [E¥]

as shown in the appendix. The necessary and sufficient
condition for any setting X, to affect only z, is

C'w=0 (21a)
for all u from 21 to n when p=r and
8C'y_ 8 E el B
S.C., l E*l (24)

as shown in the appendix.

For complete noninteraction, where every setting is to af-
fect its corresponding variable only, the conditions can be
summarized as follows:

Ce=0 (178)
where
p=1i+1,.
t=1,2,...14
C'p=0 (21a)
where .
p=it+1,...n (usr)
r=i+1,...n
SJJO.H IE lll (19)

Suoat IE zol
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where
iLtv=1,2...1
— L3
840" 21 E 1l B (24)
S0 [E*|
where
j=1,2,...1%
r=t+1,...n

Equations (172) and (21a)} state that the 4+1 to n rows of
the control matrix contain only diagonal elements. Equa-
tion (19) gives the required ratios between any two elements
of any column of the ¢ matrix. Equation (24) gives the
required ratios of any element in any column of the ("
matrix to the diagonal element.

Response equations.—The use of the operational functions
to characterize each unit in the system allows algebraic
representations of the relations among the variables of the
system. With complete noninteraction specified, the system
matrix of figure 5 becomes a diagonal matrix and each circuit
acts as follows:

i i
Y= E E3SuCoi (Y~ Ly + ELEJk Vi (25)
and
r,= SrrO'rr(Xr bt errr) + V: (2 6)

When these equations are solved for the controlled variables
as & function of the settings and the transient disturbances,
the following equations are obtained:

t21 EpSuCls t?‘_, ExVi
Y= Y A——= 27)
:4'1‘ (EpnSuCiLy)+1 é (ESuCuLy)+1
P Srrolrr vV,
=S L ¥ 1 T SO L 1 (28)

If the operational response function of y; to ¥, is defined as
R;; and the operational response function of x, to X, as R/,
equations (27) and (28) become

yi=Ry Y’_k;l (B;;Lyy—1)Ep V3 (29)
J.',-=R'n'Xr_(R’rrer_1) .F’r (30)

where '

> EpSuCy
Rﬂ— 3 k=1 (3 1)
f?l (EpSuCrLs)+1
and

R' SfrC rr ! (3 2)

8,0 L1

The response of any ¥, to I, insofar as the control matrix
is concerned depends only on the elements in the jth column
of the control matrix (fig. 3). Inasmuch as for complete
noninteraction only the ratios of the elements of that
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column of the control matrix are specified, the response can .

be independently set by choosing any one element of that
column, If the conditions for noninteraction are used,
Ry, is a function of any (Y

= 1E*8:Cy
TE* 8w O Lyt E*5l

B,

Equations (32) and (33) show the response of any controlled
variable to its setting as determined by the control functions.

The response of a controlled engine-independent variable -

does not depend on engine characteristics (equation (32})).
The response of a controlled engine-dependent variable
depends on the square engine matrix E* (fig. 2).

An important result is obtained when equations similar

to (29) and (30) are written for the errors in controlled
quantities as follows:

Y~7=0—RuL)(T—Lo 23 EaVs)  (39)
X;—E,=(1 "'R’rrer) (Xr_' er .Vr) - (3 5)

The errors in controlled quantities respond in the same
manner to both setting and transient disturbances and the
control configuration chosen can act both as a control to
setting disturbances and a regulator to transient disturbances,
at least with the transient disturbances assumed.

Ideal control functions.—The control-design problem is one
of fitting a control system to a particular plant or engine
in order to control certain variables in some specified manner.
The nature of the final system is characterized by the desired
response of controlled quantities to outside disturbances.
These responses may be exactly specified or given in genersl
qualitative terms. The nature of the engine or plant to be
controlled must be known in its static and dynamic states.
Any method of explicitly solving for the control functions
for any given plant and corresponding desired response
action would give an exact answer to this problem. N

The use of the operational functions to describe the engine,
control, and response functions and the algebraic methods
employed herein lead directly to an explicit solution for the
ideal control functions. Equations (32} and (33), which
give the response actions in terms of the control function,
can be solved for the control functions in terms of the
response functions as follows:

B;; [E* ] 36

SuCl (1—Ry;Ly) [E¥ (©9)
R,ﬂ' Lrd

S C' 'n—'l—__—m @7

(33)
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Choosing any desired respomse characteristics and solving
for the required control functions to achieve this response
are therefore theoretically possible. The use of these
equations as well ag the noninteraction conditions previously
given for control design has certain limitations that pre-
clude the use of this method in its most general sense. These
limitations arise from the inability to incorporate exactly
in & control the engine characteristics that the control is to
match. A simple first-order response can be called for in
equation (36} in spite of the higher-order transfer functions
of engine and servo. This type of response is possible only
if the control function can reduce the order of the transfer
function by allowing factoring of the numerator and the
denominator of equation (33) into exactly the same terms.

The control functions found from equations (36) and (37)
for responses that are stable would be expected to give
satisfactory results for small changes in characteristics and
in the engine characteristics the control function is to
match. Special cases of engine characteristics may require
that an unstabilizing term in the engine functions be
factored out by the control. In this case, variations in
engine or control characteristics would unstabilize the
system. In such cases, equations (36) and (37) should be
used with the proviso that the control does not decrease the
order of the response function and the response functions
must be chosen aceordingly.

The algebraic methods used in dealing with operational
functions can be further generalized in terms of equivalent
relations when the engine, the control, and the other unit
characteristics are expressed in other forms. For instance,
if the frequency-response characteristics are graphically
known from tests or analysis, all the results described herein
can be graphically performed in terms of the frequency-
response characteristics in place of the operational functions.

Summary of basic theory and results.—For an engine
having n engine-independent variables and for which 4
engine-dependent variables are to be set and controlled (i=n)
and for which n—4 engine-independent variables are to be set
and controlled, engine, control system, instrument character-
istics, servo, and transient disturbances are

Engine:
?h:E Ey-x: ' ®
where
j=1,2,...1%
Control:
ﬁ:uzﬂ(]h-(Y.,—'g'/',)—l—FZH}dO’,q;.'(XF—#E,,) (10)
where |
k=1,2,...n
Instruments:
ytv:Lw ‘Yo
(11)
Eu=Lml-' Ty

where
v=1,2,...1%

p=i+1,...n
Serve and transient disturbance:

Tp= Sﬁ'ﬁk‘{“ Vk (1 2)
where
k=1,2,...n

The necessary and sufficient conditions for any:selting ¥,
to affect only y, are

C=0 (17a)
for all p from t+1 to n, and
SuCs_|E*4| o
SuCoi 1B 19

The necessary and sufficient conditions for any setting X,
to affect only z, are

=0 (21a)
for all u from ¢+1 to n when u=r
i
— *
SJJO,.# k=1 IE Hl Ekf (24
5.0 ¥ )

For complete noninteraction, equations (17) and (19) musi
be true for all values of £ from 1 to % and equations (21) and
(24) must be true for all values of » from i1 Lo n.

With complete noninteraction specified, the response of
the controlled variables and their measured error signals Lo
setting and transient disturbances’are

y;=Ry Y;— g)_l (ByyLyy— 1) Ep 1% (29)
=R, X~ L.,—1)V, (30)
and
" Yy—9i=(1—Ry;Lyy) ( ¥,— LHE; Eg Vx) (34)
Xr —_fr=(1 _R’ner) (Xr_er ff) (3 5)
where B
By E E4SuCy [E*[8.,Cos
=7 ® i TE
% (EnSuCisLyp)+1 ¥ 80 Cos Ly 1%l
(31) and (33)
and
. R’ S)’TC’ rr (3 2)

" 8O L T
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With complete noninteraction specified, the explicit ex-
pressions for the ideal control functions in terms of the de-
sired response functions are

R | E* 5|
8,,C,,= 15 4 6
" (1—R,L;) [E¥ (36)
v . B
S:.C "=1_p L. (87)

SPECIFIC EXAMPLE

If the turbine-propeller engine, which has the two inde-
pendent variables fuel flow and blade angle, is considered,
the defining differential equations obtained by linearizing the
general functional forms of engine torque as a function of
speed and temperature, propeller torque as a function of
speed and blade angle, and temperature as a function of
speed and fuel flow are

N+ rN=—af+buw, 38)
T=cw,—eN (39)

When these equations are placed in operational form and
speed and temperature are solved for in terms of fuel flow and
blade angle,

b

—a
A'T=1+Tp'3+1+rp"w; (40)
e(l—y+r ™D .
T=tp 8+ 117p 1
where

_be

=%

CASE 1

Controlling N and r,—For the case where n=2 and i=1,
the engine matrix of figure 2 is obtained from equation (40)
and

—a b
Ell:_l-l-_rﬁ Em—m
=4 Ta=Ws
yi=N

The general control system is -
=0 uNVe—N) +C" 15wy, . — )
W= Cu(N:—N)+C'wlwy, . —75))
From equation (17a), the conditions for complete noninter-

action give
Cm = 0

and from equation (2%) for complete noninteraction,

8ul’u_ —|E*ulEw Ep; b
S2aC32 [E*[ : Ey a

where the determinant of a single-element matrix written as
[E¥*|=|E*;|E, allows the use of the equations employed
herein for this case.

The control-system equations thus become

8= CulN.—~F) +2 22 0'ute0,,—)

wr=C"p(wy, s —wy)

The responses of speed and fuel flow to their settings
become, from equation (33),

[E*SuCu
IE*[SllollLll_{_iE Il!

— aSuCu
aSnCyuLy—(1+7p)

Ell Sll C\‘11

Bu= BSuCulntl

and from equation (32),

3220 22

R 2= 8220 22L22T 1

The expressions for the ideal control functions then become,
from equation (36),

S.C Ry IE*11[= By 1 —Ry;  (14-+p)
H-n 1— Ry Ly [E*| (QA—RBuly) Eyw (1—RuLy) a
and from equation (37),
CASE I

Controlling ¥ and T'.—For the case where n=2 and =2,
the engine matrix is obtained from equations (40) and (41)
and

—a b
E11='1_[__71; Em'—"m
ae _c(d—y+7p)
E“‘1+Tp En= 1+7p
xl=ﬁ xﬂ=w_r
y1=N 2-—T

The general control system is

B=Cn(N.—N)+ Cx(T.~T)

Wr= Ozl(N:—N) + Cfnz(ﬂ—T)
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The conditions for complete—noninteraction give, from
equation (19),

SuCy IE*ul Ey b
= 1—
S Coy EE*mi En a‘Y( 'Y+Tp)
SuCa_|E*a| _ Eu b
Sa Chs IE*zzf E, a

The control-system equations thus become
— b —
B= Ou(N:—N)"l‘E —g‘f—: Coa (T, —T)
oy Sy _ _T
U= R p) S Cr NN+ CalTT)

The responses of speed and fuel flow to their settings become

[E*[Suou Sn 0:_1

S T e e e 77 B
or @
Ryy=- SpOy
SMGQ,LH+% .
c

The expressions for the ideal control funections then be-
come

_ Ry fE*nJ —Ry (1—;'7+TP)
Sulu=1"p 7= T ~T=R.I. ¢
Ry  |E*y| _ Ry 1.

ng 022 =

1.—R22 L22 ]E*I (1 _R22 L22) .E.
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SUMMARY OF RESULTS

The . control of gas-turbine engines was limited to the
linear assumptions for the engine, the control system, and
the other units in the system. Operational functions were
used for these units, the system was generalized to allow
for complex engine types having any degree of freedom, and
algebraic methods were employed in setting up the char-
acteristics of the engine, the control, the servo, and the
measuring instruments. These algebraic methods were em-
ployed to combine the various separate units into a system
showing how various effects are transmitied throughout
the entire system. A condensed matrix form was used
to illustrate the principal effects on controlled variables.

By use of either the index or matrix form of the algebraic
equations of the system, the following principal conditions
were explicitly expressed:

(a) The conditions that must be imposed on the
control funetions so that any sctiing disturbance will
affect only the variable being set

(b) The conditions that must be imposed on the
control functions for ecomplet¢ noninteraction so thai
every setting disturbance will affect only its corre-
spording variable

(¢} The response functions, which characterize the
controlled-system response action, in terms of the
control-system functions

(d) The ideal control-system characteristics in terms
of any desired response action.

A specific example using the turbine-propelier engine
having two degrees of freedom was given to illustrate the use
of the previous results.

Lewis FLiGET PROPULSION LABORATORY,
NATIONAL ADVisORY COMMITTEE FOR AERONAUTICS,
CrevELAND, Onro, April 25, 1949.



APPENDIX
CALCULATION CONDITIONS

CONDITIONS ON C MATRIX

Necessary condition.—The general equations for the re-
sponse of the controlled variables are given by equations
(A1) and (A2) (equations (14) and (15), respectively, in the
text) as follows:

® I3
yi==k=1;é;lgﬁfhkchxln__1;£y04_
3 EpSulnXi— L)+ EnVe (Al
E=1,=T41 =1

where
j=1,2,...1

i n
xk==:£%éiiclm(I;"l;lyg'F :;:lfﬁmCWn(Z;'—l;m$Q'¥“G
= w=tf

(A2)
where
k=1,2,...n

If the effects of any setting Y, are separated, equations
(A1) and (A2) become

'yf—_",éﬂ;zl Eﬂ'-skkoh( Yt_ Lwyl) +
optt

25 1 B3 S 1 Xy— L)+

k=1 g=i

b:ZIEJk Vit EE“S&O‘”( Y,—L.y,) (A3)

i n
Tg= § SexCia( ¥o— Lestye) + Z—H S0’ @ Xu— L)+
= e

o7t

t+ SuCe( Y —Luys) (A4)
If any setting Y, is to affect only y,, then any ¥;is not affected
by Y, (%) and any controlled z; (k=141 to ») is not af-
fected by Y. If equation (A3) is considered for any j#¢,
then the only term that can be a function of Y, is the last
one. Because of the arbitrary nature of the instrument
function, ¥,#<L,y, so that

kz";E,,,suo,Fo (A5)
=]

where

J#t
If equation (A4) is considered for k=i+1 to =, the only
term that can be a function of Y, is the last one; therefore

SH;OM= 1] (Aﬁ)

Ce=0 (A7)

where
k=i+1,...n

If equation (A7) is used, equation (A5) becomes

;Eﬁsﬂzoﬂ= kZ‘.}&ﬂ ESuCe

where
J= 1 s 2 ] %

and

8”==0
when

j#t
and

aﬂ==1
when

=t

The solution of this set of 4 equations in the ¢ unknown
Eﬁ* CE;gives

i i
pgl é IE*MIsnElkSkkat
Sﬂoﬂ-— EET
and because
h 5gg==0
when
p#F#l
6,;==1
when
p=t
IE*t![ :é{ EpSuCha ’
. 835 Crn= Vo (A8)
where
7=1,2,...14

Because 7 is any number (1,2, . . . %), 2 similar expression

for any other S,, €y, is

|E*ul 3} EaSuCe

Su Cu = [-E*t (Ag)
The ratio of equations (A8) and (A9) becomes
8,y Che_|E*y|
SuCei 1Bl (410
where
j=1,2,...1%
v=1,2,...1%

Equations (A7) and (A10) thus follow necessarily from the
noninteraction condition specified. _
591
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Sufficient condition.—If equation (A10) holds,

{
&
S, SuCu fTAE
=1 i Suvat 'E*w[

where
r=1,2, ...14

From the theory of determinants, the expression

EEH’E*LA:O

when
r#t
i
;1 ErjfE*ul = IE*l
when
r=t
Therefore, _
EEHSHO!:=U__ o (A11)
when

r#t
If equation (A7) also holds, then equation (A11) becomes

é E,;841Cu=0 (A12)

where
r#t

r=1,2,...1

If equations (A12) and (A7) hold, then any setting Y, will
affect only v, (fig. 5). Equations (A7) and (A10) thus are
sufficient for the noninteraction condition specified.

CONDITIONS ON C/ MATRIX

Necessary condition.—When the general equations for the
response of the controlled variables (equations (A1) and
(A2)) are written separating the effects of any sctting X,
these equations become

Yi= k2=1 % Ejkskkclku( Y:-_'Lwyv)--'!' -

n n

P - EpSuC(Xu— Lz +

k=1 p=i
B

gzmvﬁtngﬁsmo'mX;;Lnx,) (A13)

L= 21 S Ceo( ¥y — Lw'yv) + i SuC ’kn(Xp'; L;,-ﬂ-ip) +
g==] y:#-’l‘-l

T’k + Skkoykr (X T er xr) (A 1 4)

If any setting X, is to affect only x,, then any y, is not
affected by X, and any controlled z; (¢ = 141 to n) is not
affected by X, for k£ % r. In equation (A13) the only term
that ean be a function of X, is the last one. Because of the
arbitrary nature of the instrument function, X, # L, and

S EaSulln=0" A15)

where -
i=L2,...1

If equation (Al14) is considered for any k(141 to n) where
ksr, the only term that can be a function of X, is the last
one and therefore

Su;olu- =0 (A. 1 G)
“and
Cle=0 (ALT)
where
kE#r

If equation (A17) is used, equation (A15) becomes
]
g Eﬂc Sﬂc,kr _— Ejr Srrc’n

where )
=1,2,...1

The solution of this set of 7 equations in the ¢+ unknown
SkkO”k, giVGS

'—21 !E*pfl Epr Srrc‘”rr
p=

Sj.iolfr:

[E*
or .
— * -
SHCH” - pgllE MIEM &1
S"CIH I E*[ (‘ 8)
 where . . o o
i=1,2,...1

Equations (A17) and (A18) thus follow neeessarily from the
noninteraction condition specified.
Sufficient condition.—If equation (A18) holds,

i
I f) * 7
S,-,-C”” IE*I

=

=(

From the theory of determinants applied Lo the second term

S EuSiCluy o
=] Srrofrr + E‘r - O
and

JE Evj Igjj Oljr -+ Ear S"C”" =(

If equation (A17) also holds, the previous equation becomes

jan} E.y810 +=0 (A19)

If equations (A17) and (A19) hold, then any setting A,
will affect only x, (fig. 5). Equations {A17) and (A18) thus
are sufficient for the specified noninteraction conditions
to hold.

REFERENCES

1. Brown, Gordon S, and Campbell, Donald P.:
Servomechanisms. John Wiley & Sons, Ine., 1948.

2. Gardner, Murray F., and Barnes, John L.: Transients in Linear
Systems. Vol. I. John Wiley & Song, Inc., 2d ed., 1942,

Prineiples of



